Please visit my Coates Data Strategies diagrams page for the latest diagram versions.
Please visit my Coates Data Strategies presentations page for the latest presentation downloads.
All content shown below includes history prior to fall of 2019.
Presentation Info & Slides:
Best Practices for Delivering Content in the Power BI Service
The Power BI Service offers several ways to distribute content for internal colleagues and external users. In this session we will discuss when using the sharing functionality is appropriate, techniques to effectively use app workspaces, and when an app is the optimal way to distribute content. You will leave this session with an understanding of options for collaboration and distribution of content in the context of personal BI, small teams, large teams, and enterprise-wide BI initiatives.
Level: Intermediate
Slides: Please visit the presentations page on my Coates Data Strategies website for the latest version of this content.
Target Audience: Attendees who are familiar with the basic functionality in Power BI and are wishing to master these concepts
Presented At:
SQL Saturday, Charlotte, NC - Dec 7, 2019
Charlotte BI Group - Nov 5, 2019
Power BI Palooza, Atlanta, GA - June 8, 2019
Power BI Days (virtual webinar) - January 27, 2019
SQL Saturday BI Edition, Atlanta, GA - September 22, 2018
Power BI World Tour, Charlotte, NC - August 28, 2018
Essentials of Azure Data Lake Storage Gen2
In this session we will examine the components of ADLS Gen2, consider how it differs from other Azure storage options, and discuss why it is optimal for analytical workloads. We will review why multi-protocol access is important, and why the hierarchical namespace and ABFS driver are critical to query performance, data load performance, and data security. Currently supported features, roadmap features, and integration with other Azure services will be covered. Common patterns and best practices for data lake development will be included in the demonstrations to provide attendees practical and realistic examples.
Level: Introductory/Intermediate (familiarity with ADLS Gen1 is helpful but not required)
Target Audience: Technologists who would like to understand the basics of this platform
Slides: Please visit the presentations page on my Coates Data Strategies website for the latest version of this content
Presented At:
Data Saturday Holland (Amsterdam) - October 5, 2019
Power BI Architecture End-to-End
This session is a technical overview of Power BI architecture options for cloud, on-premises, and hybrid deployments. We will discuss the roles of Power BI Desktop, Power BI Service, Power BI Report Server, Power BI Embedded, Excel, as well as Power BI's relationship to other services in Azure and Office 365. Power BI terminology and its most prominent features and functionality will also be reviewed to help attendees gain an understanding of the broad collection of tools, services, and features which represent the Power BI ecosystem.
Level: Introductory
Target Audience: Technical professionals involved with a Power BI deployment who wish to understand the various components involved in an implementation.
Slides: Please visit the presentations page on my Coates Data Strategies website for the latest version of this content
Presented At:
Super SharePoint Saturday (Charlotte, NC) - Dec 14, 2019
Midlands PASS User Group (Columbia, SC) - September 10, 2019
Exploring the Power BI Service
The Power BI Service is a web-based portal which facilitates report distribution and collaboration with colleagues and stakeholders. This session will provide an overview of the core capabilities of the Power BI Service, including:
Understanding of the core components of a Power BI workspace: datasets, dataflows, workbooks, reports, and dashboards
Overview of content organization and delivery options, including workspaces, apps, and sharing
Review of other content delivery options such as subscriptions, alerting, and the mobile application
Support for various report types, including Power BI, Excel, and paginated reports
Setting up automatic data refresh of your data and when a gateway is required
Overview of when Power BI Premium is useful
Achieving data reusabililty with shared datasets, live connections, and dataflows
At the end of this session, you will be comfortable with why, when, and how to use the Power BI Service in your projects.
Level: Introductory
Target Audience: Content authors and users of the Power BI Service
Presented At:
Power UP! Virtual Event - September 5, 2019
Azure Data Lake: What, Why, and How
We will explore the capabilities of Azure Data Lake, its use cases, as well as when to implement a data lake as part of your data architecture. We will also cover the new direction of Azure Data Lake Storage Gen 2 in detail. Options for integration of the data lake with other compute and storage services will also be discussed. You will leave this session with an understanding of the benefits, challenges, and suggestions for getting started with Azure Data Lake technologies.
Level: Introductory
Slides: Azure Data Lake - What, Why, and How <--Last updated Jan 8, 2019, so are out of date currently
Presented At:
Modern Devs Charlotte, Charlotte, NC - January 8th, 2019
PASS Summit, Seattle, WA - November 6-9, 2018
Charlotte BI Group, Charlotte, NC - August 7, 2018
Triad SQL BI User Group, Greensboro, NC - June 26, 2018
24 Hours of PASS Summit Preview 2018 - June 12, 2018
SQL Saturday, Washington DC - December 9, 2017
Data Architectures in Azure for Analytics & Big Data
This session is a technical overview of data platform choices in Azure, with a focus on analytical and big data solutions. We will cover several reference architectures prevalent for cloud-based systems. Key criteria for selecting components of a multi-platform analytics architecture will be shared, such as: data latency, schema changes, data formats, data integration vs. data virtualization, scalability, and user tools/language support. Attendees of this session will become familiar with the most commonly used data services in Azure, including considerations for making sound decisions when designing a data architecture to support analytics and big data.
Level: Introductory
Slides: Data Architectures in Azure for Analytics & Big Data <—Last updated December 2018 so out of date currently
Target Audience: The ideal audience member has some experience with building data-oriented systems. Basic familiarity with cloud concepts is helpful, but exposure to Azure specifically is not necessary.
Presented At:
Microsoft Azure Meetup Group, Charlotte, NC - December 5, 2018
CPCC Computer & Technology Institute Coffee Chat, Charlotte, NC - November 16, 2018
SQL Saturday, Charlotte, NC - October 20, 2018
Tips for Getting Started with the Azure Data Platform
This session is packed with practical tips and lessons learned about using Azure as a database platform. You will learn the fundamentals about how Azure is structured to help you make architectural decisions. Ideas will be shared for planning resource groups, naming conventions, and the separation of Dev, Test, and Prod. We will discuss database platform options, data storage options, and why PowerShell and ARM are so important to deployment scenarios. Cost-saving techniques and cloud efficiencies will be discussed as well.
Level: Introductory
Slides: Tips for Getting Started with Azure <—Last updated April 2018, so out of data currently
Recording: Tips for Getting Started with Azure from PASS Summit 2017 (1hr 15 min) - recorded Oct 2017
Target Audience: Database developers and DBAs who are looking for a primer on the Azure platform
Presented At:
SQL Saturday, Raleigh, NC - April 14, 2018
PASS Summit, Seattle, WA - November 2, 2017
SQL Saturday BI Edition, Boston, MA - September 23, 2017
Selecting a Data Warehousing Technology in Azure
There are numerous choices in the Azure platform to implement a data warehouse for supporting analytical, big data, and business intelligence workloads. In this session we will talk through reference architectures for common scenarios, beginning with relational choices for traditional data warehousing, progressing to non-relational and composite architectures to support modern data warehousing and analytical environments. We will bring clarity to when Azure SQL Data Warehouse really is the best choice, versus when another Azure service may be a more suitable solution. Practical suggestions to inform your decision-making process will be shared throughout the session.
Level: Intermediate (some exposure to Azure concepts is beneficial for attendees, but not required)
Slides: Selecting a Data Warehousing Technology in Azure
Recording: Selecting a Data Warehousing Technology in Azure (56 minutes) - recorded Jan 2018
Target Audience: Technologists who are looking to understand data platform choices in Azure for DW workloads.
Presented At:
BlueGranite webinar, January 31, 2018
Designing a Modern Data Warehouse + Data Lake
Join us for a discussion of strategies and architecture options for implementing a modern data warehousing environment. We will explore advantages of augmenting an existing data warehouse investment with a data lake, and ideas for organizing the data lake for optimal data retrieval. We will also look at situations when federated queries are appropriate for employing data virtualization, and how federated queries work with SQL Server, Azure SQL DB, Azure SQL DW, Azure Data Lake, and/or Azure Blob Storage.
Level: This is an intermediate session suitable for attendees who are familiar with data warehousing fundamentals.
Slides: Designing a Modern DW + Data Lake <--Slides last updated March 2017
Presented At:
SQL Saturday, Charlotte, NC - October 14, 2017
Analytics Frontiers, Charlotte, NC - March 29, 2017
SQL Saturday, Raleigh, NC - Mar 11, 2017
SQL Saturday BI Edition, Denver, CO - Feb 25, 2017
Triangle SQL Server User Group (TriPASS), Raleigh, NC - Jan 17, 2017
Designing Modern Data and Analytics Solutions in Azure (full day session)
Co-presented with Meagan Longoria
This full-day session will focus on principles and practices for architecting modern analytics/BI/DW systems in Azure. We will discuss Azure fundamentals, implementation strategies, key decision points, and lessons learned from customer projects. Cloud design patterns will be explored, including cloud-specific concerns and considerations, as well as key differences from traditional on-premises deployments. Reference architectures will be presented which address scenarios such as real-time data ingestion vs. batch loads, data virtualization vs. data integration, schema on read vs. schema on write, SQL on Hadoop, high data volumes, varying file formats, enabling data science, and facilitating self-service BI. After considering various reference architectures, we will proceed with building an end-to-end solution for one reference architecture based on requirements presented to the audience.
Approximately 30% of the day will be hands-on labs, 50% presentation, and 20% open discussion and questions. Specific technologies discussed will include: Azure SQL Database, Azure SQL Data Warehouse, Azure Data Lake Store, Azure Data Lake Analytics, U-SQL, Azure Storage, Azure Data Factory, Azure Databricks, Spark, Hive, HDInsight, Azure Analysis Services, PolyBase, Elastic Queries, Azure Event Hub, Azure Stream Analytics, Azure Data Catalog, Machine Learning Services, Azure Machine Learning, Azure Cognitive Services, Power BI, BIML, ARM templates, PowerShell, and Azure Virtual Machines. Attendees of this session will gain a broad understanding of the fundamentals for designing data solutions in Azure, techniques for navigating the wide variety of platform choices in Azure, and suggestions for developing sound architectural systems.
Primary Goals:
Explore reference architectures and cloud design patterns for building analytics/BI/DW systems.
Share lessons learned, customer project stories, and implementation strategies.
Provide scripts and instruction to gain hands-on experience setting up a cloud analytics solution in Azure.
Level: 200 (Intermediate)
Target Audience: The ideal audience member has some experience as a data engineer, BI professional, or database developer, and is in the early stages of migrating or building solutions in Azure.
Prerequisites: Familiarity with developing BI/analytics systems will be very helpful, but is not required. No Azure experience is required.
Presented At:
PASS Summit 2018, Seattle, WA - November 5, 2018
Architecting a Data Lake (full day session)
This full-day session will focus on principles for designing and implementing a data lake. There will be a mix of concepts, lessons learned, and technical implementation details. This session is approximately 70% demonstrations: we will create a data lake, populate it, organize it, query it, and integrate it with a relational database via logical constructs. You will leave this session with an understanding of the benefits and challenges of a multi-platform analytics/DW/BI environment, as well as recommendations for how to get started.
Target audience: Technologists who are considering or beginning a data lake implementation. No data lake experience is required. Familiarity with a relational database such as SQL Server is helpful, as some of the scenarios discussed will focus on integrating a data lake with a relational data warehouse.
You will learn in this session:
Scenarios and use cases for expanding an analytics/DW/BI environment into a multi-platform environment which includes a data lake
Methods for planning & organizing a data lake which focuses on optimal data retrieval and data security
Determining when to use Azure Data Lake Analytics (U-SQL) vs. HDInsight vs. Azure Databricks vs. relational functionality for data processing
Deciding between Azure Blob Storage vs. Azure Data Lake Store vs. a relational platform for data storage
Use cases and syntax basics for U-SQL, PolyBase, and elastic queries
Benefits and challenges of schema-on-read vs. schema-on-write approaches for data integration and on-demand querying needs
Specific technologies discussed and/or demonstrated in this session include:
Azure Data Lake Store | Azure Data Lake Analytics | HDInsight | Azure Databricks | U-SQL |
Azure SQL Data Warehouse | PolyBase | Azure SQL Database | Elastic Queries | Azure Storage
If you have an Azure account and your own laptop, you will be able to follow along during the demonstrations if you'd like. Demo scripts will be provided with the workshop materials.
Presented At:
Pre-Conference Session at SQL Saturday, Raleigh, NC - April 13, 2018
Pre-Conference Session at SQL Saturday, Washington DC - December 8, 2017
Pre-Conference Session at SQL Saturday, Charlotte, NC - October 13, 2017
Designing Azure Data and Analytics Solutions (full day session)
Co-presented with Meagan Longoria
This full-day session will walk through building modern BI/analytics solutions in Azure. We’ll discuss Azure fundamentals and then dive in to implementation strategies, architecture and development decisions, and lessons learned from previous projects. With so many different services available in Azure, it can be overwhelming to decide which ones to use. We’ll explain reference architectures and design patterns for scenarios such as real-time data ingestion vs. batch loads, data virtualization vs. data integration, schema on read vs. schema on write, SQL on Hadoop, high data volumes, varying file formats, enabling data science, and facilitating self-service BI. We’ll also discuss hybrid environments where some components are on-premises while others are in Azure. Once we are familiar with the reference architectures, we’ll will get hands on and build an end-to-end solution for one scenario. Attendees of this session will gain a broad understanding of the fundamentals for designing data solutions in Azure, techniques for navigating the wide variety of platform choices in Azure, and suggestions for developing sound architectural systems.
Presented At:
SQL Trail, Richmond, VA - October 12, 2018
Fundamentals of Designing a Data Warehouse
In this session we will review sensible techniques for developing a data warehousing environment which is relevant, agile, and extensible. We will cover practical dimensional modeling fundamentals and design patterns, along with when to use techniques such as partitioning or clustered columnstore indexes in SQL Server. We'll also review tips for using a database project in SQL Server Data Tools (SSDT) effectively. The session will conclude with tips for planning the future growth of your data warehouse.
Level: This is an introductory session best suited to attendees who are new to data warehousing concepts.
Slides: Fundamentals of Designing a DW <--Slides last updated February 2017
Presented At:
SQL Malibu User Group, San Fernando Valley, CA - Feb 15, 2017
Pearl Hacks, Chapel Hill, NC - Feb 11, 2017 (an informal workshop/whiteboarding version of this presentation)
SQL Saturday BI Edition, Atlanta, GA - Dec 10, 2016 (under previous title: Good Habits of a DW Developer)
Presentation Archives:
Note that older archives with outdated information and/or older technologies have been removed from this archive.
The What, Why, and How of Collecting Telemetry Data
To better understand SentryOne usage patterns and deliver maximum value to our customers, release 11.2 now anonymously collects telemetry data on an opt-in basis. In this session, we will show actual examples of telemetry data collected, as well as an overview of the technical implementation to send, ingest, store, and analyze this data. We will also share key observations so far from the data.
Level: Introductory
Target Audience: SentryOne customers
Presented At:
PASS Summit, Seattle, WA - October 31, 2017
Building Blocks of Cortana Intelligence Suite in Azure
Join us for a practical look at the components of Cortana Intelligence Suite for information management, data storage, analytics, and visualization. Purpose, capabilities, and use cases for each component of the suite will be discussed. If you are a technology professional who is involved with delivering business intelligence, analytics, data warehousing, or big data utilizing Azure services, this technical overview will help you gain familiarity with the components of Cortana Intelligence Suite and its potential for delivering value.
Level: A fast-moving introductory session
Target Audience: Technology professionals seeking to gain a high level understanding of the capabilities of the Cortana Intelligence Suite
Slides: Building Blocks of Cortana Intelligence Suite <--Slides last updated April 2017
Presented At:
Azure Bootcamp, Charlotte, NC - April 22, 2017
SQLBits 16, Telford, England - April 8, 2017
PASS Cloud Virtual Chapter - Sept 28, 2016
SQL Saturday, Charlotte, NC - Sept 17, 2016
SQL Saturday, Spartanburg, SC - Aug 20, 2016
Hampton Roads SQL Server User Group, Virginia Beach, VA - July 20, 2016
Charlotte Microsoft Cloud Meetup Group, Charlotte, NC - July 14, 2016
Carolina IT Professionals Group (CITPG), Charlotte, NC - June 20, 2016
Charlotte BI Group (CBIG), Charlotte, NC - June 7, 2016
SQL Saturday, Atlanta, GA - May 21, 2016
Tales from Building a SQL Server Data Warehouse in Azure
In this session, we share our experiences and lessons learned from a recent migration to Azure for a SQL Server data warehousing environment. We begin with sharing our reasoning for IaaS vs. PaaS, our carefully-selected naming conventions, and how we structured development, test, and production within subscriptions and resource groups. We cover the what, why, and how for decisions around storage, encryption, and backups. Finally, the session wraps up with a brief discussion of the use of Azure Resource Manager (ARM) templates and PowerShell, as well as techniques for monitoring the environment in Azure.
Level: A fast-moving introductory session
Slides: Tales from Building a SQL Server DW in Azure <--Slides last updated August 2017
Target Audience: Technology professionals responsible for creating and managing resources in Azure
Presented At:
Carolina IT Professionals Group (CITPG), Charlotte, NC - August 21, 2017
PASS WIT Virtual Chapter (Webinar) - July 19, 2017
Charlotte BI Group (CBIG), Charlotte, NC - July 11, 2017
SentryOne Webinar - June 19, 2017
The Lifecycle of a Reporting Services Report
Description: In this session we will discuss various tips and best practices as we follow a report through its lifecycle via an end-to-end demo. Beginning with a discussion of requirements and useful templates, we will progress to a review of good report development and standardization practices, followed by suggestions for testing and validation. Next we will consider alternatives for deployment, report delivery, and handling ongoing enhancements and bug fixes. The lifecycle will wrap up with a discussion of maintenance and administration of the reporting environment.
Level: Intermediate
Slides: Lifecycle of an SSRS Report <—Slides last updated Jan 2014
Presented At:
New Zealand Business Intelligence User Group, Webcast - 1/29/2014